Structure of 5-Amino-1-diphenylmethylimidazole-4-carboxamide

By T. Banerjee* and P. Roychowdhury
Department of Physics, University of Calcutta, Calcutta 700009 , India
D. Chattopadhyay
Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Calcutta 700 064, India
S. Ray and G. Chatterjee
Department of Chemistry, University of Calcutta, Presidency College, Calcutta, India
and S. Kashino and M. Haisa
Department of Chemistry, Faculty of Science, Okayama University, Okayama 700, Japan

(Received 11 September 1989; accepted 16 July 1990)

Abstract

C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}, \quad M_{r}=292 \cdot 34\), monoclinic, $P 2_{1} / a, \quad a=12 \cdot 325(1), \quad b=22 \cdot 303$ (2), $\quad c=$ $11 \cdot 3682(9) \AA, \quad \beta=100 \cdot 015(7)^{\circ}, \quad V=3077 \cdot 3(5) \AA^{3}$, $Z=8, \quad D_{m}=1.283$ (by flotation in benzenebromoform) , $\quad D_{x}=1.262 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{CuK} \mathrm{\alpha})=$ $1.5418 \AA, \mu(\mathrm{Cu} K \alpha)=6.230 \mathrm{~cm}^{-1}, \quad R=0.045$ for 3876 observed reflections. The conformation of the molecule is stabilized by extensive conjugation of the 5 -aminoimidazole-4-carboxamide moiety and intramolecular hydrogen bonding. The conformation of the phenyl rings of the diphenylmethyl group is different in the two crystallographically independent molecules. The phenyl rings stand almost perpendicular to each other as found in many active anti-

 histamines.Introduction. Theophylline and its derivatives have been used as bronchodilators in the treatment of asthma owing to their ability to inhibit the enzyme cyclic adenosine monophsphate (cAMP) phosphodiesterase which regulates the cellular level of cAMP nucleotide under normal conditions. These antihistamines possess an extended planar heterocyclic structure associated with a $\mathrm{C}=\mathrm{O}$ moiety and a substituent of a basic or neutral character. Higher activity has been observed when the heterocyclic ring-system is capable of being transformed by hydrogen bonding into a more extended aromatic system (Lunt, 1982). The presence of bulky groups like diphenylmethyl and similar dicyclic moieties in well known antihistamines like chloropheniramine, bromopheniramine, promethazine and related compounds, indicates that these groups play important roles in interaction at the receptor site. To achieve a

[^0]0108-2701/91/040804-04\$03.00
synergistic effect we attempted to combine these two structural features in a single compound and have synthesized a series of 1 -substituted-5-amino-imidazole-4-carboxamides. The synthesis and crystal structure analysis of 5-amino-1-diphenylmethy-limidazole-4-carboxamide is presented here. This compound is expected to possess an extended planar structure through hydrogen bonding.

Experimental. The title compound was synthesized by heating a mixture of 2-amino-2-cyanoacetamide $(1 \mathrm{~g}, 10 \mathrm{mmol})$ and ethyl orthoformate $(1.6 \mathrm{~g}$, 11 mmol) in acetonitrile (20 ml) under reflux for 45 min , affording ethyl N-(carbamoylcyanomethyl)formimidate (Sen, Ray \& Chattopadhyay, 1977), followed by addition of diphenylmethylamine $(2 \mathrm{~g}, 11 \mathrm{mmol})$ and heating under reflux for 1 h ; yield 65%, melting point $480-481 \mathrm{~K}$. The compound was characterized by UV, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. UV (EtOH): $\lambda_{\text {max }} 270,210(\log \varepsilon 4 \cdot 14,4 \cdot 18$ respectively) 230 nm and $\lambda_{\text {min }}(\log \varepsilon 3.66)$; the ${ }^{1} \mathrm{H}$ NMR singlets at $\delta 6.74$ and 6.69 correspond to $\mathrm{C}(2)-\mathrm{H}$ of the imidazole ring and $(\mathrm{Ph})_{2}-\mathrm{H}$, respectively; the ${ }^{13} \mathrm{C}$ NMR signal assignments at $\delta 166 \cdot 90$ $\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{C}=\mathrm{O}\right), 128 \cdot 93,112 \cdot 58,143 \cdot 40$ [C(2), $\mathrm{C}(4)$ and $\mathrm{C}(5)$, respectively of the imidazole ring], 60.08 $\left[\mathrm{C}(\mathrm{Ph})_{2}-\mathrm{H}\right], 138.75$ (quaternary C of phenyl rings), $128 \cdot 5,128 \cdot 19$ ($o-, m$ - and $p-\mathrm{C}-\mathrm{H}$ carbons of the phenyl rings) were assigned considering the shifting influence of $-\mathrm{CONH}_{2}, \mathrm{NH}_{2}$ and $\mathrm{C}(\mathrm{H}) \mathrm{Ph}_{2}$ on the imidazole C atoms (Pugmire \& Grant, 1968).

Colourless crystals from ethanolic solution, density by flotation (benzene-bromoform mixture); crystal size $0.25 \times 0.28 \times 0.28 \mathrm{~mm}$; Rigaku AFC- 5 rotating-anode four-circle diffractometer; Ni-filtered $\mathrm{Cu} \mathrm{K} \alpha$ radiation; accurate cell parameters from

[^1]least-squares fit of setting angles for 20 reflections ($18<\theta<32^{\circ}$); 4560 reflections ($-13<h<13,0<k$ $<24,0<l<12,3<2 \theta<120^{\circ}$) measured, $\omega-2 \theta$ scans, reflections $2 \overline{3} 0,23 \overline{1}$ and 141 monitored every 97 reflections; variation in standard intensities $\pm 1.9 \%$; scan speed $6^{\circ} \mathrm{min}^{-1}$ in ω; scan angle ($1.2+$ $0.15 \tan \theta)^{\circ}$; background measured for 4 s on either side of the peak; correction for Lp, absorption ignored; structure solved by direct methods using mULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978); all non-H atoms located from the best E map; full-matrix refinement using SHELX76 (Sheldrick, 1976) with 3876 'observed' [I>2.5 $5(I)]$ reflections; non-H atoms anisotropic and H atoms (located from ΔF synthesis) isotropic, $R=0.0447, w R=0.0609, S=1.20, w=$ $1 /\left[\sigma^{2}\left(\left|F_{o}\right|\right)+0.01185\left(\mid F_{o}\right)^{2}\right]$; scattering factors from SHELX76; $(\Delta / \sigma)_{\text {max }}<0.04 ; \Delta \rho$ in final ΔF synthesis in the range -0.24 to $0.25 \mathrm{e} \AA^{-3}$.

Discussion. The two crystallographically independent molecules constituting the asymmetric unit have been designated as molecules A and B. These two molecules form hydrogen-bonded dimers; the amino group $\mathrm{N}(5)$ of the carboxamide moiety of molecule A forms a hydrogen bond with the carbonyl oxygen $\mathrm{O}(1)$ of molecule B and vice versa. Fig. 1 shows a thermal-ellipsoid drawing of molecule A together with the numbering scheme of the non- H atoms. The fractional atomic coordinates and the equivalent isotropic thermal parameters are listed in Table 1.* The

Fig. 1. Thermal-ellipsoid drawing of molecule A with atomic numbering of the non-H atoms. Ellipsoids of 50% probability are drawn for the non- H atoms; the H atoms attached to N atoms are represented as spheres equivalent to $B=1.0 \AA^{2}$.

Table 1. Fractional atomic coordinates with e.s.d.'s in parentheses

	x	y	z	$U_{e q}\left(\AA^{2}\right)$
Molecule A				
$\mathrm{O}(1)$	0.0495 (1)	$0 \cdot 1558$ (1)	0.7933 (1)	0.0520 (5)
N(1)	0.0566 (1)	0.2768 (1)	1.0770 (1)	0.0381 (5)
N(3)	0.2126 (1)	0.2465 (1)	1.0235 (1)	0.0458 (5)
N(4)	-0.0800 (1)	0.2284 (1)	0.9307 (1)	0.0477 (5)
N(5)	0.2342 (1)	0.1704 (1)	0.8258 (2)	0.0529 (6)
C(2)	0.1694 (1)	0.2786 (1)	1.0979 (2)	0.0465 (6)
C(4)	$0 \cdot 1234$ (1)	0.2203 (1)	0.9488 (2)	0.0380 (6)
C(5)	0.0273 (1)	0.2389 (1)	0.9815 (1)	0.0349 (5)
C(6)	0.1329 (1)	0.1806 (1)	0.8504 (2)	0.0408 (6)
C(7)	-0.0181 (1)	0.3057 (1)	1.1471 (2)	0.0394 (6)
C(8)	-0.0499 (2)	0.2648 (1)	1.2424 (2)	0.0455 (6)
C(9)	-0.1294 (2)	0.2846 (1)	1.3061 (2)	0.0633 (9)
C(10)	-0.1632 (2)	0.2494 (2)	1.3923 (2)	0.0820 (11)
C(11)	-0.1185 (3)	0.1936 (2)	1.4151 (2)	0.0797 (12)
C(12)	-0.0397 (3)	0.1729 (1)	1.3546 (2)	0.0830 (11)
C(13)	-0.0046 (2)	0.2088 (1)	1-2668 (2)	0.0628 (8)
C(14)	0.0322 (1)	0.3650 (1)	$1 \cdot 1952$ (2)	0.0427 (6)
C(15)	0.0922 (2)	0.3703 (1)	1.3097 (2)	0.0529 (7)
C(16)	0.1434 (2)	0.4240 (1)	1.3480 (2)	0.0667 (8)
C(17)	0.1330 (2)	0.4725 (1)	1.2727 (3)	0.0711 (10)
C(18)	0.0738 (3)	0.4680 (1)	$1 \cdot 1604$ (3)	0.0745 (9)
C(19)	0.0224 (2)	0.4143 (1)	$1 \cdot 1205$ (2)	0.0591 (17)
Molecule B				
O(1)	0.2601 (1)	$0 \cdot 1130$ (1)	$0 \cdot 5989$ (1)	0.0579 (5)
N(1)	0.2439 (1)	-0.0097 (1)	$0 \cdot 3134$ (2)	0.0483 (5)
N(3)	0.0978 (1)	0.0088 (1)	0.3969 (2)	0.0587 (6)
N(4)	0.3835 (1)	0.0508 (1)	0.4322 (2)	0.0581 (7)
N(5)	0.0862 (1)	0.0801 (1)	0.5972 (2)	0.0529 (6)
C(2)	0.1347 (2)	-0.0201 (1)	0.3142 (2)	0.0601 (8)
C(4)	$0 \cdot 1868$ (2)	0.0414 (1)	0.4559 (2)	0.0437 (6)
C(5)	0.2781 (1)	0.0298 (1)	0.4040 (2)	0.0404 (6)
C(6)	0.1803 (2)	0.0809 (1)	0.5553 (2)	0.0438 (6)
C(7)	0.3118 (2)	-0.0394 (1)	0.2349 (2)	0.0467 (7)
C(8)	0.2485 (2)	-0.0380 (1)	$0 \cdot 1073$ (2)	0.0483 (7)
C(9)	0.2286 (2)	-0.0885 (1)	0.0372 (2)	0.0570 (8)
$\mathrm{C}(10)$	$0 \cdot 1686$ (2)	-0.0860 (1)	-0.0772 (2)	0.0715 (9)
C(11)	$0 \cdot 1296$ (2)	-0.0322 (1)	-0.1248 (2)	0.0786 (11)
C(12)	0.1496 (3)	0.0188 (1)	-0.0579 (3)	0.0907 (12)
C(13)	0.2096 (3)	0.0163 (1)	0.0564 (3)	0.0782 (10)
C(14)	$0 \cdot 3488$ (2)	-0.1009 (1)	0.2815 (2)	0.0467 (6)
C(15)	0.2739 (2)	-0.1432 (1)	0.3105 (2)	0.0624 (8)
$\mathrm{C}(16)$	0.3096 (2)	-0.2000 (1)	0.3512 (2)	0.0745 (11)
C(17)	0.4210 (3)	-0.2144 (1)	0.3645 (2)	0.0779 (10)
C(18)	0.4927 (2)	-0.1735 (1)	0.3359 (3)	0.0827 (11)
C(19)	0.4576 (2)	-0.1175 (1)	$0 \cdot 2953$ (2)	0.0665 (8)

interatomic bond distances and angles are given tabulated in Table 2.

The difference in bond lengths between the chemically equivalent bonds is not significant.

The molecular conformation is stabilized by extensive conjugation and intramolecular hydrogen bonding. The conjugation of the carboxamide group with the imidazole ring results in near planarity of this group with the ring; the dihedral angle between this group and the imidazole ring is 4.69 (9) ${ }^{\circ}$ in molecule A and $6.40(1)^{\circ}$ in molecule B. The carboxamide group is orientated in such a way that the carbonyl oxygen $\mathrm{O}(1)$ forms a six-membered hydrogenbonded chelate ring with the amino nitrogen $N(4)$ at position 5 of the imidazole ring; this hydrogenbonded ring makes a dihedral angle of $8.52(7)^{\circ}$ in molecule A and $9 \cdot 17(9)^{\circ}$ in molecule B with the plane of the imidazole ring. The heterocyclic ring thus forms an extended quasiplanar hydrogenbonded system and fulfils the important structural requirements for antihistaminic and antiasthmatic activity (Lunt, 1982). The angular asymmetry in the

Table 2. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and hydrogen-bond distances (\AA) with e.s.d.'s in parentheses

	Molecule A	A Molecule B		
$\mathrm{O}(1)-\mathrm{C}(6)$	1.246 (2)	$1 \cdot 247$ (3)		
$\mathrm{C}(6)-\mathrm{N}(5)$	1.345 (2)	1.328 (3)		
$\mathrm{C}(6)-\mathrm{C}(4)$	1.447 (3)	1.446 (3)		
$\mathrm{C}(4)-\mathrm{C}(5)$	1.366 (2)	1.383 (3)		
$\mathrm{C}(5)-\mathrm{N}(4)$	$1 \cdot 368$ (2)	1.366 (2)		
$\mathrm{C}(5)-\mathrm{N}(1)$	1.374 (2)	1.365 (3)		
$\mathrm{N}(1)-\mathrm{C}(2)$	1.370 (2)	1.367 (3)		
$\mathrm{C}(2)-\mathrm{N}(3)$	$1 \cdot 292$ (3)	$1 \cdot 286$ (3)		
$\mathrm{N}(3)-\mathrm{C}(4)$	$1 \cdot 395$ (2)	$1 \cdot 388$ (3)		
$\mathrm{N}(1)-\mathrm{C}(7)$	1.467 (2)	1.482 (3)		
$\mathrm{C}(7)-\mathrm{C}(8)$	1.519 (3)	1.523 (3)		
$\mathrm{C}(8)-\mathrm{C}(9)$	1.388 (4)	1.377 (3)		
$\mathrm{C}(9)-\mathrm{C}(10)$	1.375 (4)	$1 \cdot 381$ (3)		
$\mathrm{C}(10)-\mathrm{C}(11)$	1.369 (6)	$1 \cdot 369$ (3)		
$\mathrm{C}(11)-\mathrm{C}(12)$	1.372 (5)	$1 \cdot 367$ (3)		
$\mathrm{C}(12)-\mathrm{C}(13)$	1.405 (4)	$1 \cdot 380$ (4)		
$\mathrm{C}(13)-\mathrm{C}(8)$	1.376 (3)	$1 \cdot 391$ (3)		
$\mathrm{C}(7)-\mathrm{C}(14)$	$1 \cdot 521$ (3)	1.512 (3)		
$\mathrm{C}(14)-\mathrm{C}(15)$	1.386 (3)	1.399 (3)		
$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 388$ (3)	$1 \cdot 393$ (3)		
$\mathrm{C}(16)-\mathrm{C}(17)$	1.372 (3)	$1 \cdot 392$ (4)		
$\mathrm{C}(17)-\mathrm{C}(18)$	$1 \cdot 359$ (4)	$1 \cdot 349$ (4)		
$\mathrm{C}(18)-\mathrm{C}(19)$	$1 \cdot 393$ (3)	1.375 (3)		
$\mathrm{C}(19)-\mathrm{C}(14)$	1.382 (3)	$1 \cdot 374$ (3)		
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{N}(5)$	121.9 (2)	$122 \cdot 8$ (2)		
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(4)$	$120 \cdot 3$ (1)	120.9 (2)		
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(4)$	117.8 (1)	$116 \cdot 3$ (2)		
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{N}(3)$	124.4 (1)	123.4 (2)		
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{C}(5)$	$125 \cdot 9$ (1)	127.4 (2)		
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	109.6 (2)	109.2 (2)		
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	$106 \cdot 3$ (1)	$106 \cdot 0$ (2)		
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(4)$	$130 \cdot 8$ (1)	$130 \cdot 3$ (2)		
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	122.7 (1)	$123 \cdot 7$ (2)		
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(2)$	$105 \cdot 9$ (1)	$106 \cdot 2$ (2)		
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(7)$	126.6 (1)	127.6 (2)		
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(7)$	$127 \cdot 3$ (2)	126.0 (2)		
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$113 \cdot 1$ (1)	$113 \cdot 2$ (2)		
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$105 \cdot 1$ (1)	105.4 (2)		
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	112.8 (2)	108.4 (2)		
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(14)$	108.8 (1)	$111 \cdot 2$ (2)		
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(14)$	113.9 (2)	115.2 (2)		
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$118 \cdot 3$ (2)	123.0 (2)		
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)$	122.9 (2)	119.8 (2)		
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	118.8 (2)	117.2 (2)		
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.3 (2)	121.6 (2)		
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.9 (2)	$120 \cdot 1$ (2)		
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120 \cdot 1$ (3)	119.5 (2)		
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120 \cdot 2$ (3)	120.4 (2)		
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	119.7 (2)	$121 \cdot 1$ (2)		
$\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{C}(15)$	122.0 (2)	$121 \cdot 6$ (2)		
$\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{C}(19)$	119.0 (2)	$120 \cdot 9$ (2)		
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	119.0 (2)	117.5 (2)		
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.5 (2)	$120 \cdot 5$ (2)		
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.8 (2)	119.6 (2)		
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$120 \cdot 3$ (2)	119.5 (2)		
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$120 \cdot 6$ (3)	$120 \cdot 9$ (2)		
$\mathrm{C}(18)-\mathrm{C}) 19-\mathrm{C}(14)$	119.8 (2)	121.8 (2)		
$\mathrm{N}(4 A) \cdots \mathrm{O}(1 A)$	2.911 (2) N	$\mathrm{N}(4 A) \cdots \mathrm{N}\left(3 A^{\text {i }}\right.$)	2.983 (2)	
$\mathrm{N}(4 B) \cdots \mathrm{O}(1 B)$	2.972 (3) N	$\mathrm{N}(5 A) \cdots \mathrm{N}\left(3 A^{\text {ii }}\right)$	3.288 (3)	
$\mathrm{N}(5 A) \cdots \mathrm{O}(1 B)$	2.946 (3) N($\mathrm{N}(5 B) \cdots \mathrm{N}\left(3 B^{\text {iii }}\right)$	$3 \cdot 022$ (3)	
$\mathrm{N}(5 A) \cdots \mathrm{O}(1 A)$	2.894 (3)			

exocyclic angles at $C(5)$ may be attributed to the participation of the amino group in intramolecular hydrogen bonding with the vicinal carboxamide moiety. Similar results have been found in the literature (Adamiak \& Saenger, 1979; Afshar, Berman, Sawzik, Lessinger, Lim \& Hosmane, 1987; Kálmán, Jozsef \& Kálmán, 1980; Freeman \& Hutchinson, 1979). The carboxamide group is positioned in such a way that the internitrogen distance $[\mathrm{N}(5)$ (carboxamide) $-\mathrm{N}(1)$ (imidazole)] of 4.55 (3) \AA in molecule A
and 4.51 (3) \AA in molecule B is close to the internitrogen distance of 4.8 (2) \AA in an active antihistaminic agent (Kier, 1968).

The conjugation of the $\mathrm{N}(4)$ amino group and the carboxamide moiety with the imidazole ring results in shortening of the $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bonds of the imidazole rings. As in other imidazole derivatives (Zanoti \& Delpra, 1978; Afshar et al., 1987; KiecKononowicz, Zejc, Mikolajczyk, Zatorski, KarolakWojciechowska \& Wieczorek, 1981), the endocyclic angle at $C(2)$ is larger than the other endocyclic angles of the imidazole ring.

The lengthening of the $\mathrm{C}(7)-\mathrm{N}(1)$ bond distance [1.467 (2) in molecule A and 1.482 (3) \AA in molecule B] compared to the $\mathrm{C}\left(s p^{3}\right)-\mathrm{N}$ (planar) distance of $1.454 \AA$ (Allen, Kennard, Watson, Brammer \& Orpen, 1987) and deviation of the $\mathrm{C}(8)-\mathrm{C}(7)-$ $\mathrm{C}(14)$ angle [113.9 (2) ${ }^{\circ}$ in molecule A and $115.2(2)^{\circ}$ in molecule B] from the tetrahedral values relieve the steric hindrance due to bulky diphenyl substitution at $\mathrm{C}(7)$.

The conformation of the phenyl rings of the diphenylmethyl group bonded to $\mathrm{C}(7)$ is different in the two molecules. In molecule A the phenyl rings stand almost perpendicular to the plane of the imidazole ring, the dihedral angles between these two planes being $85 \cdot 59$ (8) and $86.74(8)^{\circ}$. The phenyl rings are inclined to each other at an angle of $101 \cdot 14(7)^{\circ}$. This dihedral angle is similar to that between the two aromatic rings of active antihistaminic drugs like triprolidine, $106 \cdot 5^{\circ}$ (James \& Williams, 1974b), DL-bromopheniramine, $103 \cdot 6^{\circ}$ (James \& Williams, 1971) and (+)-chloropheniramine maleate, 113.6° (James \& Williams, 1974a). In molecule B the phenyl rings are inclined to each other at an angle of 72.51 (8) ${ }^{\circ}$ and make dihedral angles of $78 \cdot 2$ (1) and $70.68(7)^{\circ}$ with the plane of the imidazole ring.
An extensive hydrogen-bond network stabilizes the molecular packing shown in Fig. 2.

Fig. 2. A view of the molecular packing arrangement.

One of the authors (TB) thanks the Council of Scientific and Industrial Research for the award of a Research Associateship.

References

Adamiak, D. A. \& Saenger, W. (1979). Acta Cryst. B35, 924-928.
Afshar, C., Berman, H. M., Sawzik, P., Lessinger, L., Lim, B. B. \& Hosmane, R. S. (1987). J. Cryst. Spectrosc. Res. 17, 533-543.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. \& Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. Sl-Si9.
Freeman, H. C. \& Hutchinson, N. D. (1979). Acta Cryst. B35, 2045-2050, 2051-2054.
James, M. N. G. \& Williams, G. J. B. (1971). J. Med. Chem. 14, 670-675.
James, M. N. G. \& Williams, G. J. B. (1974a). Can. J. Chem. 52, 1872-1879.
James, M. N. G. \& Williams, G. J. B. (1974b). Can. J. Chem. 52, 1880-1888.

Kálmán, S., Jozsef, S. \& Kálmán, A. (1980). Acta Cryst. B36, 2323-2328.
Kiec-Kononowicz, K., Zejc, A., Mikolajczyk, M., Zatorski, A., Karolak-Wojciechowska, J. \& Wieczorek, M. V. (1981). Tetrahedron, 37, 409-415.
Kier, L. B. (1968). J. Med. Chem. 11, 441-445.
Lunt, E. (1982). In Progress in Pharmaceutical Research, Vol. 4, edited by K. R. H. Wooldridge. Oxford: Blackwell Scientific Publications.
Main, P., Hull, S. E. Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Pugmire, R. J. \& Grant, D. M. (1968). J. Am. Chem. Soc. 90, 4232-4238.
Sen, A. K., Ray, S. \& Chattopadhyay, G. (1977). Indian J. Chem. 15B, 426-429.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Zanotti, G. \& Delpra, A. (1978). Acta Cryst. B34, 20502052.

Acta Cryst. (1991). C47, 807-810

Structure of 8-Dimethylamino-1-dimethylammonionaphthalene Hydrogen Squarate

By J. A. Kanters,* A. Schouten and J. Kroon
Laboratorium voor Kristal- en Structuurchemie, Rijksuniversiteit Utrecht, Transitorium 3, Padualaan 8, 3584 CH Utrecht, The Netherlands
and E. Grech
Institute of Fundamental Chemistry, Technical University of Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland

(Received 10 July 1990; accepted 7 August 1990)

Abstract

Dimethylamino-1-naphthyl)dimethylammonium 2-hydroxy-3,4-dioxocyclobut-1-en-1olate, $\quad \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2}^{+} . \mathrm{C}_{4} \mathrm{HO}_{4}^{-}, \quad M_{r}=328 \cdot 37, \quad$ orthorhombic, Pbca, $a=18.319$ (3), $b=14.868$ (2), $c=$ $12 \cdot 219$ (1) $\AA, \quad V=3328.1$ (8) $\AA^{3}, \quad Z=8, \quad D_{x}=$ $1.311 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=1.0 \mathrm{~cm}^{-1}$, $F(000)=1392, \quad T=150 \mathrm{~K}, \quad R=0.036$ for 3003 observed reflections with $I \geq 2 \cdot 5 \sigma(I)$. In the crystal structure of the title compound bis(dimethylamino)naphthalene acts as a proton sponge by accepting a proton from squaric acid. In the 1-dimethylamino-8dimethylammonionaphthalene cation a strong asymmetric intramolecular hydrogen bond is formed with $\mathrm{N} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N} 2.583$ (2), 1.08 (2) \AA and $157(2)^{\circ}$ respectively. The $\mathrm{N}-\mathrm{H}$ donor also is involved in a weak interaction with a squarate carbonyl group. The hydrogen squarate anions form

[^2]0108-2701/91/040807-04\$03.00
planar strongly hydrogen-bonded cyclic dimers across centres of inversion with $\mathrm{O} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} 2.477$ (2), 0.97 (2) \AA and $170(2)^{\circ}$ respectively. In contrast to the free base which displays severe puckering of the aromatic system and opposite deviations of the N atoms of $0.40 \AA$ from the best plane, the aromatic system including both N atoms of the cation is planar.

Introduction. The NHN hydrogen bonds in homoconjugated nitrogen bases play an important role in so-called proton sponges (Alder, Bowman, Steele \& Wintermann, 1968; Hibbert, 1974; de Groot \& Sikkema, 1976; Awwal \& Hibbert, 1977; Alder, Goode, Miller, Hibbert, Hunte \& Robbins, 1978; Glowiak, Malarski, Sobczyk \& Grech, 1987). Among the NHN systems the bi-centre bases with 1,8bis(dimethylamino)naphthalene (DMAN) as a representative proton sponge are of particular interest.
© 1991 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: (c) 1991 International Union of Crystallography

[^2]: * To whom correspondence should be addressed.

